Source code for oumi.core.analyze.length_analyzer

# Copyright 2025 - Oumi
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Length analyzer for text content."""

import re
from typing import Optional, Union

import pandas as pd
from transformers import PreTrainedTokenizer, PreTrainedTokenizerFast

from oumi.core.analyze.column_types import ContentType
from oumi.core.analyze.sample_analyzer import SampleAnalyzer
from oumi.core.registry import register_sample_analyzer


[docs] @register_sample_analyzer("length") class LengthAnalyzer(SampleAnalyzer): """Analyzer that computes various length metrics for text content.""" def __init__( self, *, char_count: bool = True, word_count: bool = True, sentence_count: bool = True, token_count: bool = False, tokenizer: Optional[Union[PreTrainedTokenizer, PreTrainedTokenizerFast]] = None, include_special_tokens: bool = True, ): """Initialize the LengthAnalyzer. Args: char_count: Whether to compute character count word_count: Whether to compute word count sentence_count: Whether to compute sentence count token_count: Whether to compute token count tokenizer: Tokenizer to use for token counting (required if token_count=True) include_special_tokens: Whether to include special tokens in token count. Defaults to True to match training tokenization. Set to False for raw content analysis only. """ self.char_count = char_count self.word_count = word_count self.sentence_count = sentence_count self.token_count = token_count self.tokenizer = tokenizer self.include_special_tokens = include_special_tokens # Validate tokenizer requirements if self.token_count and tokenizer is None: raise ValueError( "tokenizer must be provided when token_count=True. " "Set token_count=False or provide a tokenizer." )
[docs] def analyze_sample( self, df: pd.DataFrame, schema: Optional[dict] = None, ) -> pd.DataFrame: """Analyze text fields and return metrics. Args: df: Input DataFrame with text fields schema: Column schema dict to identify text fields Returns: DataFrame with added field-level analysis columns """ result_df = df.copy() if not schema: raise ValueError( "schema is required to identify text fields for length analysis. " "Please provide a column schema dict that specifies which " "columns contain text content." ) text_columns = [ col for col, config in schema.items() if config.get("content_type") == ContentType.TEXT and col in df.columns ] if not text_columns: raise ValueError( "No text fields found in the DataFrame for length analysis. " "Please ensure your schema specifies columns with" "content_type='text'and that those columns exist in the DataFrame." ) # Analyze each text field and add field-level metrics for column in text_columns: if self.char_count: result_df[f"{column}_char_count"] = df[column].astype(str).str.len() if self.word_count: result_df[f"{column}_word_count"] = ( df[column].astype(str).str.split().str.len() ) if self.sentence_count: result_df[f"{column}_sentence_count"] = ( df[column] .astype(str) .apply( lambda text: len( [s.strip() for s in re.split(r"[.!?]+", text) if s.strip()] ) ) ) if self.token_count and self.tokenizer is not None: tokenizer = self.tokenizer # Type assertion for pyright result_df[f"{column}_token_count"] = ( df[column] .astype(str) .apply( lambda text: len( tokenizer.encode( text, add_special_tokens=self.include_special_tokens ) ) ) ) return result_df